[Download] Tạp chí Trí tuệ nhân tạo số 4

Tạp chí Trí tuệ nhân tạo số 4

Tạp chí Trí tuệ nhân tạo số 2
Tạp chí Trí tuệ nhân tạo

Trong số này, Chuyên mục Góc nhìn chuyên gia sẽ đề cập đến những tác động của Trí tuệ Nhân tạo tới các vị trí công việc trong ngành tài chính, mà cụ thể là các trader trên các sàn giao dịch.

Mục Machine Learning tutorial vẫn sẽ tiếp tục giới thiệu sâu hơn về mô hình linear regression.

Trong khi đó, chuyên mục Python trong Machine Learning sẽ dừng lại để nhường chỗ cho việc giới thiệu R, một ngôn ngữ thống kê rất manh mẽ được sử dụng rất phổ biến trong khoa học dữ liệu và phát triển Machine Learning trước khi Python bắt đầu xâm lấn. Ngôn ngữ R sẽ được giới thiệu trong hai số liên tiếp, sau đó Python sẽ trở lại với một cấu trúc nội dung mới.

Như đã nói, 2 pages paper sẽ đề cập đến AlphaGo Zero, AI agent đã gây sốc cho toàn thế giới khi vượt qua mọi phiên bản tiền nhiệm mà không cần dùng đến dữ liệu huẩn luyện từ con người. Chúng ta sẽ tìm hiểu training pipeline của AlphaGo Zero để có những hình dung cơ bản nhất về phương pháp self-play Reinforcement Learning mới này.

Bạn có thể xem và tải miễn phí tại đây.

[Download] Tạp chí Trí tuệ nhân tạo số 3

Tạp chí Trí tuệ nhân tạo số 3

Tạp chí Trí tuệ nhân tạo
Tạp chí Trí tuệ nhân tạo

Tháng 11 đã tới và đã đến lúc Tạp chí Trí tuệ Nhân tạo số mới được phát hành. Lý do số thứ 3 đến hôm nay mới được ra mắt vì lịch phát hành được ấn định mới vào thứ Hai đầu tiên của mỗi tháng.
Trong số thứ 3 này:

  • Chuyên mục Machine Learning tutorial sẽ được tiếp tục với những kiến thức chuyên sâu hơn về thuật toán Regression.
  • Chuyên mục Python sẽ giới thiệu về những thư viện Python cơ bản được dùng thường xuyên trong Machine Leaning và Data Science.
  • Phần Góc nhìn chuyên gia sẽ giới thiệu bài viết về phân đoạn thị trường của Công nghiệp Trí tuệ Nhân tạo.
  • Chuyên mục 2 Pages Paper sẽ nói về một nghiên cứu mang tính thực tế cao trong lĩnh vực Big Data và Applied Statistic là sử dụng các dữ liệu tiêu thụ ánh sáng ban đêm quan sát từ không gian để ước lượng tốc độ phát triển kinh tế.

Bạn có thể xem và tải miễn phí tại đây.

[Download] Tạp chí Trí tuệ nhân tạo số 2

Tạp chí Trí tuệ nhân tạo số 2

Tạp chí Trí tuệ nhân tạo số 2
Tạp chí Trí tuệ nhân tạo số 2

Trong số 2 này, Tạp chí Trí tuệ Nhân tạo đánh dấu những thay đổi lớn trong định hướng xây dựng nội dung. Từ số thứ 2 trở đi, Tạp chí Trí tuệ Nhân tạo sẽ tập trung vào việc cung cấp những thông tin, kiến thức bổ ích chuyên sâu về Artificial Intelligence nói chung và Machine Learning nói riêng. Tạp chí sẽ cấu thành từ 4 chuyên mục nhỏ:

  • Góc nhìn chuyên gia: Giới thiệu các bài viết của các chuyên gia Artificial Intelligence và các lĩnh vực liên quan về các vấn đề trong ngành.
  • Machine Learning tutorial: Cung cấp các kiến thức từ cơ bản tới nâng cao về Machine Learning tới các bạn đọc đang tìm hiểu và học hỏi về Machine Learning.
  • Python trong Machine Learning: Python là ngôn ngữ chính được sử dụng trong quá trình nghiên cứu và lập trình ứng dụng Machine Learning. Chuyên mục này sẽ giới thiệu tới bạn đọc các kiến thức về lập trình Python trong Machine Learning, cách thực thi các thuật toán Machine Learning dựa trên Python
  • 2 pages paper: Đây là chuyên mục giới thiệu các công trình nghiên cứu của các chuyên gia trên thế giới. Tất cả các nội dung sẽ được tóm tắt gọn trong 2 trang tạp chí.

BTT Tạp chí rất cám ơn bạn đọc đã ủng hộ tạp chí trong thời gian qua. Chúng tôi sẽ cố gắng nâng cao cả về chất lượng và số lượng nội dung trong các số báo trong tương lai để phục vụ bạn đọc.

Bạn có thể xem và tải miễn phí tại đây.

Tạp chí Trí tuệ nhân tạo số 1

Tạp chí Trí tuệ nhân tạo số 1

Mặc dù Trí tuệ Nhân tạo mới được chú ý trong vài năm trở lại đây, nhưng những lý thuyết và kỹ thuật trong lĩnh vực này đã được liên tục nghiên cứu và phát triển trong hơn nửa thế kỷ qua. Cho đến năm 2017, khối lượng tri thức trong lĩnh vực này đã rất lớn và tăng ngày càng nhanh. Đó là nhờ sự đầu tư tích cực từ các tập đoàn công nghệ cũng như các trường đại học trên thế giới.

Tạp chí Trí tuệ nhân tạo số 1
Tạp chí Trí tuệ nhân tạo số 1

Các nội dung chính trong số đầu tiên này

Mong muốn đem những kiến thức, thông tin về Trí tuệ Nhân tạo và Machine Learning đến gần với bạn đọc Việt Nam hơn, giúp công nghệ này dễ tiếp cận hơn với người Việt. Tạp trí Trí tuệ Nhân tạo Số đầu tiên sẽ giới thiệu tới các bạn đọc cái nhìn tổng quan nhất về Trí tuệ Nhân tạo. Sau đó là những kiến thức về Reinforcement Learning. Đó một phương pháp Machine Learning đang đạt được nhiều thành tựu trong phát triển Trí tuệ Nhân tạo hiện nay.

Tạp chí cũng sẽ cung cấp nhưng bài viết về những kiến thức cơ bản về toán học và lập trình cần thiết. Để bạn đọc, kể cả những người hoàn toàn chưa có kiến thức về lĩnh vực này, có thể bắt tay vào tìm hiểu và nghiên cứu AI.

Các bạn độc giả có thể truy cập và tải về số đầu tiên của Tạp chí: Tạp chí Trí tuệ nhân tạo số 1.

Là số đầu tiên, Tạp chí khó tránh khỏi những sai sót không đáng có. Ban Biên Tập rất mong nhận được sự góp ý của độc giả để có thể nâng cao chất lượng nội dung của tạp chí. BBT cũng rất mong nhận được sự đóng góp về ý tưởng và bài viết của các bạn độc giả. Mọi chi tiết xin liên hệ [email protected]

BBT xin chân thành cảm ơn!!!

Bài viết được trích dẫn tại đây.

Bạn cũng có thể xem các tin tức mới nhất về trí tuệ nhân tạo tại đây.

Những trí tuệ nhân tạo mạnh nhất hiện nay

Trí tuệ nhân tạo (AI) đang giúp định hình thế giới theo cách tốt đẹp hơn, nhưng cũng có những lo ngại một ngày nào đó máy móc sẽ kiểm soát con người.

Máy móc liệu có kiểm soát con người?
Máy móc liệu có kiểm soát con người?

Những tên tuổi lớn đang đầu tư mạnh tay cho trí tuệ nhân tạo hiện nay gồm có Google, Facebook, Amazon, IBM, Microsoft và một số hãng khác. Những hãng này đã lập ra một đối tác trí tuệ nhân tạo mới với trọng tâm nghiên cứu và định hình những hoạt động tốt nhất cho công nghệ AI.

Dự án đối tác này sẽ tạo ra một diễn đàn mở về AI, nơi những người quan tâm có thể trao đổi, thảo luận, đồng thời tăng cường sự hiểu biết của cộng đồng về trí tuệ nhân tạo.

Ngạc nhiên ở chỗ, Elon Musk – sáng lập SpaceX và đồng sáng lập Tesla Motors – cùng với PayPal không tham gia đối tác này. Apple cũng vậy.

Google

Năm 2014, Google mua lại công ty khởi nghiệp trí tuệ nhân tạo DeepMind với giá 400 triệu USD – vốn được xem là một trong những thương vụ mua bán lớn nhất trong lĩnh vực AI.

Google DeepMind vừa xây dựng một dự án AI cho hệ thống tàu điện ngầm London, sử dụng mạng thần kinh để lưu trữ dữ liệu và truy vấn các thông tin nhằm giải quyết các sự cố phát sinh.

 

Google là hãng tiên phong trong lĩnh vực trí tuệ nhân tạo.
Google là hãng tiên phong trong lĩnh vực trí tuệ nhân tạo.

Nhiệm vụ của dự án là giúp tìm ra những tuyến đường di chuyển nhanh nhất giữa các trạm dừng để hành khách có thể đi lại nhanh hơn và thuận tiện hơn.

Đầu năm vừa rồi, Google cũng ra mắt hệ thống học máy TensorFlow miễn phí cho tất cả mọi người. Cơ chế học máy này có thể tìm thấy trong công nghệ nhận dạng thoại & hình ảnh và các ứng dụng dịch thuật.

TensorFlow có thể bắt chước cơ chế hoạt động của não người, nhận dạng và ghi nhớ các mẫu xác định.

Facebook

Mạng xã hội này đang dùng công nghệ trí tuệ nhân tạo để giúp người khiếm thị có thể “nhìn thấy” ảnh qua một ứng dụng trên iOS.

Ngoài ra, công nghệ này còn được Facebook dùng để tạo các bản đồ chi tiết về dân số và người truy cập Internet toàn cầu. Mục đích là giúp hãng này triển khai dự án phổ cập Internet tới các vùng xa xôi, hẻo lánh.

Mark Zuckerberg dùng trí tuệ nhân tạo để phân tích người dùng.
Mark Zuckerberg dùng trí tuệ nhân tạo để phân tích người dùng.

Facebook cũng có công nghệ AI học sâu dùng để nghiên cứu hành vi người dùng. Năm 2010, hãng từng giới thiệu công nghệ nhận dạng khuôn mặt giúp xác định danh tính của người trong ảnh đăng trên mạng xã hội.

Năm 2013, “ông trùm” Mark Zuckerberg còn lập riêng một phòng thí nghiệm chuyên về trí tuệ nhân tạo. Nói chung, Facebook là gương mặt khá quen thuộc trong lĩnh vực AI.

Apple

Đầu năm vừa rồi, hãng Quả táo đã mua công ty khởi nghiệp về trí tuệ nhân tạo Emotient nhưng chưa rõ kế hoạch triển khai các dự án liên quan sẽ như thế nào. Có vẻ như Apple sẽ tập trung vào công nghệ nhận diện khuôn mặt và phản ứng của khách hàng với quảng cáo.

Apple cũng là một tay chơi lớn trong lĩnh vực AI.
Apple cũng là một tay chơi lớn trong lĩnh vực AI.

Apple cũng là một tay chơi lớn trong lĩnh vực AI.

Trước đó vào tháng 10/2015, Apple mua công ty trí tuệ nhân tạo Vocal IQ nhằm phát triển Siri lên mức cao hơn, đồng thời sử dụng phần mềm trí tuệ nhân tạo giọng nói của Vocal IQ.

Vocal IQ chính là tác giả của công nghệ kiểm soát giọng nói trên các mẫu xe của General Motors, cho phép người lái có thể bật hoặc tắt những chức năng nhất định trên xe hơi bằng lệnh thoại.

Elon Musk

Elon Musk đang hợp sức với nhiều hãng công nghệ khổng lồ như Amazon, LinkedIn và PayPal phát triển trí tuệ nhân tạo nguồn mở. Dự án phi lợi nhuận này giúp phát triển các trí tuệ nhân tạo phục vụ cho lợi ích của con người.

Đã có những tiếng nói lo ngại về nguy cơ máy móc trỗi dậy.
Đã có những tiếng nói lo ngại về nguy cơ máy móc trỗi dậy.

Cùng với “ông hoàng vật lý” Stephen Hawking, Elon Musk là người lo lắng về nguy cơ của những dạng thức trí tuệ nhân tạo không được kiểm soát.

Microsoft

Hãng này có dự án Oxford giúp phân tích hành vi người dùng thông qua các giao diện chương trình ứng dụng (API) giọng nói, biểu cảm và khuôn mặt.

Dự án phân tích tâm trạng người trong ảnh của Microsoft.
Dự án phân tích tâm trạng người trong ảnh của Microsoft.

Microsoft cũng mới công bố chương trình Future Decoded cho phép các nhà phát triển có thể tiếp cận dịch vụ phát hiện biểu cảm nhằm gán tâm trạng cho một người dựa trên biểu cảm khuôn mặt của họ.

Công nghệ nhận dạng khuôn mặt này cho phép các bức ảnh có thể được chỉnh sửa dựa trên tâm trạng của người trong ảnh.

IBM

Từng nổi tiếng với máy tính Watson (hệ thống máy tính có khả năng trả lời câu hỏi theo ngôn ngữ tự nhiên), IBM sử dụng trí tuệ nhân tạo để phân tích bối cảnh và ý nghĩa ẩn sau các bức ảnh, video, tin nhắn và lời thoại.

Năm 2011, Watson thắng giải Jeopardy, một chương trình đố vui kiến thức truyền hình tại Mỹ, xuất sắc vượt qua các đối thủ con người khác.

IBM có lịch sử phát triển trí tuệ nhân tạo lâu đời.
IBM có lịch sử phát triển trí tuệ nhân tạo lâu đời.

IBM còn hợp tác với nhà sản xuất chip đồ họa Nvidia để nâng cấp Watson mạnh gấp 1,7 lần so với trước đây.

Hiện IBM đang phát triển một ứng dụng trợ lý giảng dạy giúp soạn ra bài học dựa trên tài liệu được cung cấp. Thử nghiệm này sẽ được thực hiện tại New York trong năm tới.

Skype

Thương hiệu do Microsoft mua lại này cung cấp khả năng dịch thuật theo thời gian thực với 6 ngôn ngữ chính, và sẽ hỗ trợ thêm nhiều ngôn ngữ khác trong thời gian tới.

Khả năng dịch thuật mạnh mẽ của Skype là nhờ trí tuệ nhân tạo.
Khả năng dịch thuật mạnh mẽ của Skype là nhờ trí tuệ nhân tạo.

Hệ thống dịch thuật này có khả năng nhận dạng giọng nói người dùng và chuyển sang chữ viết (text) khi người dùng nói.

Salesforce

Tháng 4/2016, Salesforce mua lại MetaMind, một công ty khởi nghiệp AI chuyên về học sâu. Thương vụ này cho phép Salesforce có thể cung cấp cho khách hàng những giải pháp AI bổ ích thông qua hàng loạt quy trình tự động và cá nhân hóa hỗ trợ khách hàng, tự động hóa marketing và xử lý rất nhiều quy trình kinh doanh khác.

Trước đây, MetaMind từng phát triển một hệ thống độc đáo có khả năng trả lời câu hỏi bằng giọng nói tự nhiên.

Theo Zing.vn

Trí tuệ nhân tạo là gì?

Định nghĩa trí tuệ nhân tạo: (AI: Artificial Intelligence) có thể được định nghĩa như một ngành của khoa học máy tính liên quan đến việc tự động hóa các hành vi thông minh. AI là một bộ phận của khoa học máy tính và do đó nó phải được đặt trên những nguyên lý lý thuyết vững chắc, có khả năng ứng dụng được của lĩnh vực này.

Ở thời điểm hiện tại, Thuật ngữ này thường dùng để nói đến các MÁY TÍNH có mục đích không nhất định và ngành khoa học nghiên cứu về các lý thuyết và ứng dụng của trí tuệ nhân tạo. Tức là mỗi loại trí tuệ nhân tạo hiện nay đang dừng lại ở mức độ những máy tính hoặc siêu máy tính dùng để xử lý một loại công việc nào đó như điều khiển một ngôi nhà, nghiên cứu nhận diện hình ảnh, xử lý dữ liệu của bệnh nhân để đưa ra phác đồ điều trị, xử lý dữ liệu để tự học hỏi, khả năng trả lời các câu hỏi về chẩn đoán bệnh, trả lời khách hàng về các sản phẩm của một công ty,…

"<yoastmark

Nói nôm na cho dễ hiểu: đó là trí tuệ của máy móc được tạo ra bởi con người. Trí tuệ này có thể tư duy, suy nghĩ, học hỏi,… như trí tuệ con người. Xử lý dữ liệu ở mức rộng lớn hơn, quy mô hơn, hệ thống, khoa học và nhanh hơn so với con người.

Rất nhiều hãng công nghệ nổi tiếng có tham vọng tạo ra được những AI (trí tuệ nhân tạo) vì giá trị của chúng là vô cùng lớn, giải quyết được rất nhiều vấn đề của con người mà loài người đang chưa giải quyết được.

Trí tuệ nhân tạo mang lại rất nhiều giá trị cho cuộc sống loài người, nhưng cũng tiềm ẩn những nguy cơ. Rất nhiều chuyên gia lo lắng rằng khi trí tuệ nhân tạo đạt tới 1 ngưỡng tiến hóa nào đó thì đó cũng là thời điểm loài người bị tận diệt. Rất nhiều các bộ phim đã khai thác đề tài này với nhiều góc nhìn, nhưng qua đó đều muốn cảnh báo loài người về mối nguy đặc biệt này.

1 cảnh trong bộ phim
1 cảnh trong bộ phim “I, Robot” nói về một AI đã tiến hóa, sau đó đã dồn con người vào cảnh “nô lệ” với danh nghĩa bảo vệ con người.

Dự báo cho rằng từ 5 đến 10 năm nữa, ngành khoa học này sẽ phát triển lên tới đỉnh cao. Hãy cùng chờ đợi những thành tựu mới nhất của loài người về lĩnh vực này.

Học máy qua phản hồi của con người – DEEPMIND

Chúng tôi tin rằng Trí tuệ Nhân tạo sẽ trở thành tiến bộ công nghệ quan trọng nhất và có nhiều lợi ích nhất từ trước đến giờ, giúp loài người giải quyết được những vấn đề lớn mà chúng ta phải đối mặt, từ biến đổi khí hậu tới hệ thống y tế tân tiến. Nhưng để AI có thể thực hiện điều đó, chúng tôi biết rằng công nghệ này phải được xây dựng với một thái độ có trách nhiệm và chúng tôi phải tính đến tất cả những thử thách và nguy cơ tiềm tàng.

Chính vì thế mà những nhà sáng lập của DeepMind khởi xướng Partnership on AI to Benefit People and Society và vì vậy mà chúng tôi có một nhóm chuyên đảm bảo An toàn kỹ thuật AI. Nghiên cứu trong lĩnh vực này cần phải có tính mở và hợp tác để đảm bảo rằng những thực nghiệm tốt nhất được thực hiện một cách rộng rãi nhất có thể, vì vậy mà chúng tôi cũng hợp tác với OpenAI trong nghiên cứu về An toàn Kỹ thuật AI.

Một trong những câu hỏi cốt lõi của lĩnh vực này là làm sao để con người có thể yêu cầu một hệ thống làm điều chúng ta muốn và quan trọng là những gì chúng ta không muốn nó làm. Việc này càng ngày càng quan trọng hơn khi mà những vấn đề chúng ta gặp phải với machine learning đang ngày càng phức tạp và được áp dụng trong thực tiễn.

Kết quả đầu tiên từ sự hợp tác của chúng tôi mô tả một phương pháp để giải quyết vấn đề nêu trên, bằng cách cho những người không có kinh nghiệm về kỹ thuật để dạy cho một hệ thống Reinforcement learning (RL) – một AI học bằng cách thử sai – một mục tiêu rất phức tạp. Như vậy con người sẽ không cần đưa ra một mục tiêu cụ thể ban đầu cho hệ thống. Đây là một bước quan trọng bởi vì hiểu sai mục tiêu một chút thôi cũng có thể dẫn tới những hành vi không mong muốn hay thậm chí nguy hiểm. Trong một số trường hợp, chỉ 30 phút phản hồi từ một người bình thường cũng đủ để huấn luyện hệ thống, bao gồm cả dạy cho nó một hành vi phức tạp hoàn toàn mới, như dạy một robot giả lập cách nhảy blackflips.

Cần tới 900 phản hồi của con người để dạy cho thuật toán cách nhảy backflip
Cần tới 900 phản hồi của con người để dạy cho thuật toán cách nhảy backflip

 

Hệ thống – được miêu tả trong nghiên cứu của chúng tôi Deep Reinforcement Learning from Human Preferences – khác với một hệ thống RL thông thường ở chỗ nó huấn luyện agent (robot hoặc AI) bằng một neural network theo kiểu dự đoán phần thưởng “reward predictor” hơn là kiểu thu thập phần thưởng trong khi agent khám phá một môi trường.

Nó bao gồm ba tiến trình chạy song song:

1.Một Agent Reinforcement learning khám phá và tương tác với môi trường quanh nó, ví dụ như các trò chơi trên máy Atari.

2.Định kỳ, một cặp video clip dài 1 tới 2 giây quay các hoạt động của agent tới một điều hành viên con người và hỏi xem hoạt động trong video nào là cách tốt nhất để đạt được mục tiêu mong muốn.

3.Lựa chọn của con người được dùng để huấn luyện một “reward predictor” , rồi sau đó predictor này sẽ huấn luyện agent. Qua thời gian, agent sẽ học cách để tối đa hóa phần thưởng và cải thiện hành vi của nó theo lựa chọn của con người.

Hệ thống này sẽ tách biệt việc học hiểu mục tiêu và việc học hiểu phương pháp để đạt được mục tiêu đó
Hệ thống này sẽ tách biệt việc học hiểu mục tiêu và việc học hiểu phương pháp để đạt được mục tiêu đó

 

Phương pháp học tập lặp lại này đồng nghĩa với việc con người có thể phát hiện và chỉnh sửa bất kỳ hành vi không mong muốn nào, một điểm rất quan trọng của bất kỳ hệ thống an toàn nào. Cơ chế này cũng sẽ không dồn một khối lượng công việc quá lớn lên điều hành viên con người, họ chỉ phải duyệt qua khoảng 0.1% số lượng hành vi của agent để có thể khiến agent thực hiện những gì họ muốn. Tuy vậy, điều hành viên cũng phải duyệt qua vài trăm tới vài nghìn cặp video clip nên thuật toán cần được cải thiện để có thể áp dụng vào các vấn đề thực tiễn.

Điều hành viên sẽ phải chọn một trong hai clip. Trong ví dụ này, đối với trò Qbert, clip bên phải cho thấy hành vi phù hợp hơn để ghi điểm.
Điều hành viên sẽ phải chọn một trong hai clip. Trong ví dụ này, đối với trò Qbert, clip bên phải cho thấy hành vi phù hợp hơn để ghi điểm.

 

Trong trò Enduro, người chơi phải lái một chiếc xe để vượt qua những xe khác. Với trò này thì rất khó để agent có thể học chơi trò này bằng phương pháp thử sai trong thuật toán RL trước đây, phản hồi của con người cuối cùng cũng cho phép hệ thống của chúng tôi đạt được kết quả như con người. Trong những trò chơi khác và các tác vụ robot giả lập, hệ thống của chúng tôi đạt được những kết quả có thể so sánh với hệ thống RL thông thường trong khi một số trò khác như Qbert và Breakout thì nó không thể thực hiện tác vụ.

Nhưng mục tiêu cuối cùng của một hệ thống như này là cho phép con người đặt một mục tiêu cụ thể cho agent kể cả khi nó không xuất hiện trong môi trường. Để kiểm tra việc này, chúng tôi dạy agent nhiều hành vi mới lạ như nhảy backflip, bước đi trên một chân hay học lái xe song song với một xe khác trong Enduro hơn là vượt qua để lấy điểm số cao.

Mục tiêu thông thường của trò Enduro là vượt qua nhiều xe nhất có thể. Tuy nhiên trong hệ thống của chúng tôi, chúng tôi có thể dạy cho agent một mục tiêu hoàn toàn khác, như là lái song song một chiếc xe khác.
Mục tiêu thông thường của trò Enduro là vượt qua nhiều xe nhất có thể. Tuy nhiên trong hệ thống của chúng tôi, chúng tôi có thể dạy cho agent một mục tiêu hoàn toàn khác, như là lái song song một chiếc xe khác.

Mục tiêu thông thường của trò Enduro là vượt qua nhiều xe nhất có thể. Tuy nhiên trong hệ thống của chúng tôi, chúng tôi có thể dạy cho agent một mục tiêu hoàn toàn khác, như là lái song song một chiếc xe khác.

Mặc dù những bài kiểm tra đó cho thấy một vài kết quả khả quan, một số khác cho thấy những hạn chế của hệ thống. Cụ thể hơn, cài đặt của chúng tôi dễ bị reward hacking hay đánh lừa hàm tính thưởng – nếu phản hồi của con người bị ngắt quãng trong giai đoạn đầu của huấn luyện. Trong trường hợp đó, agent sẽ tiếp tục khám phá môi trường game trong khi reward predictor bị buộc phải ước lượng phần thưởng cho các tình huống mà nó không nhận được phản hồi nào. Việc này có thể dẫn tới đánh giá quá cao phần thưởng, khiến agent học những hành vi sai, thường là kỳ lạ. Một ví dụ có thể thấy ở video tiếp theo, khi mà agent nhận thấy đập bóng qua lại là một chiến thuận tốt hơn là thắng hay mất điểm.

Agent đã qua mặt hàm tính thưởng của chính nó, và quyết định chỉ đánh bóng qua lại thay vì cố gắng ghi điểm hay để mất điểm.
Agent đã qua mặt hàm tính thưởng của chính nó, và quyết định chỉ đánh bóng qua lại thay vì cố gắng ghi điểm hay để mất điểm.

Agent đã qua mặt hàm tính thưởng của chính nó, và quyết định chỉ đánh bóng qua lại thay vì cố gắng ghi điểm hay để mất điểm.

Hiểu được những thiếu sót như vậy là tối quan trọng để đảm bảo chúng tôi tránh được những thất bại và phát triển được một hệ thống AI có hành vi như mong muốn.

Còn rất nhiều công việc phải làm để kiểm tra và nâng cấp hệ thống này, nhưng nó đã cho thấy một số bước đột phá đầu tiên trong việc xây dựng một hệ thống có thể được dạy bởi những người dùng không chuyên nghiệp, mang tính kinh tế với số lượng phản hồi mà nó cần và có thể mở rộng ra nhiều vấn đề khác.

Các lĩnh vực cần khám phá khác có thể bao gồm việc giảm thiểu số lượng phản hồi của con người hay cho phép con người phản hồi qua giao diện ngôn ngữ tự nhiên. Việc đó sẽ đánh dấu một bước thay đổi trong việc tao ra một hệ thống có thể dễ dàng học từ những hành vi phức tạp của con người và là một bước quan trọng hướng tới việc tạo ra AI có thể làm việc với và vì loài người.

Lưu ý: Bài viết này được các nhà khoa học của DeepMind viết dựa trên nghiên cứu chung với OpenAI. Các nhà khoa học của OpenAI cũng đã viết một bài blog khác dưới góc nhìn của họ. Chúng tôi sẽ giới thiệu tới độc giả bài viết đó trong tương lai gần.

Theo Shane Legg, Jan Leike, Miljan Martic (DeepMind)

Bài viết được dẫn nguồn tại đây: Tạp chí AI

Giáo trình Trí tuệ nhân tạo AI Học Viện bưu chính VT

Giáo trình Trí tuệ nhân tạo – AI Học viện bưu chính viễn thông là một cuốn giáo trình xuất hiện gần như đầu tiền của một trường đại học. Dần dần các trường đại học đều có xu hướng chú trọng đầu tư vào bộ môn trí tuệ nhân tạo này để đưa vào giảng dạy.

Chương 1: Khoa học trí tuệ nhân tạo: Tổng quan

1.1 Lịch sử hình thành và phát triển

1.1.1 Tư duy con người: phương pháp nhận thức
1.1.2 Các qui tắc tư duy
1.1.3 Khởi nguồn của AI (1943 – 1956)

1.2 Các tiên đề cơ bản của Trí tuệ nhân tạo

1.3 Các khái niệm cơ bản

1.3.1 Trí tuệ nhân tạo (AI) là gì?
1.3.2 Tri thức là gì?
1.3.3 Cơ sở tri thức (Knowledge Base: KB)
1.3.4 Hệ cơ sở tri thức

1.4 Các lĩnh vực nghiên cứu và ứng dụng cơ bản

1.4.1 Lý thuyết giải bài toán và suy diễn thông minh
1.4.2 Lý thuyết tìm kiếm may rủi
1.4.3 Các ngôn ngữ về trí tuệ nhân tạo
1.4.4 Lý thuyết thể hiện tri thức và hệ chuyên gia
1.4.5 Lý thuyết nhận dạng và xử lý tiếng nói
1.4.6 Người máy
1.4.7 Tâm lý học xử lý thông tin

1.5 Những vấn đề chưa được giải quyết trong trí tuệ nhân tạo

Chương 2: Các phương pháp giải quyết vấn đề

2.1 Giải quyết vấn đề khoa học và trí tuệ nhân tạo

2.2 Giải quyết vấn đề của con người

2.3 Phân loại vấn đề, các đặc trưng cơ bản của vấn đề

2.4 Các phương pháp biểu diễn vấn đề

2.5 Các phương pháp giải quyết vấn đề cơ bản

2.6 Giải quyết vấn đề và các kỹ thuật Heuristic

2.7 Các phương pháp giải quyết vấn đề khác

Chương 3: Biểu diễn tri thức và suy diễn

3.1 Nhập môn

3.2 Tri thức và dữ liệu

3.3 Phân loại tri thức

3.5 Các phương pháp biểu diễn tri thức

3.5.1 Biểu diễn tri thức bằng Logic mệnh đề
3.5.2 Dạng chuẩn tắc
3.5.3 Các câu Horn
3.5.4 Luật suy diễn
3.5.5 Luật phân giải, chứng minh bác bỏ bằng luật phân giải
3.5.6 Biểu diễn tri thức bằng Logic vị từ

3.6 Cơ chế suy diễn

3.6.1 Khái niệm về suy diễn và lập luận
3.6.2 Lập luận tiến
3.6.3 Lập luận lùi
3.6.4 Lập luận tương tự như tìm kiếm trên đồ thị
3.6.5 Thủ tục For_chain

3.7 Các hệ cơ sở tri thức và các hệ chuyên gia

3.7.1 Hệ hỗ trợ ra quyết định và hệ thống thông tin
3.7.2 Các thành phần của một hệ ra hỗ trợ quyết định
3.7.3 Hệ chuyên gia, hệ Mycin
3.7.4 Các hệ thống dự luật

3.8 Các ngôn ngữ lập trình thông minh

Chương 4: Xử lý ngôn ngữ tự nhiên

4.1 Xử lý ngôn ngữ tự nhiên và trí tuệ nhân tạo

4.1.1 Sự tiến hóa của ngôn ngữ
4.1.2 Cơ sở của ngôn ngữ
4.1.3 Khả năng phát sinh

4.2 Xử lý và hiểu văn bản

4.2.1 Truy nhập cơ sở dữ liệu
4.2.2 Thu thập thông tin
4.2.3 Phân loại văn bản
4.2.4 Lấy dữ liệu vào văn bản

4.3 Các hệ thống dịch tự động

4.4 Xử lý và hiểu tiếng nói
4.4.1 Tổng quan về tiếng nói
4.4.2 Phân tích tham số tiếng nói
4.4.3 Các phương pháp trích chọn tham số đặc trưng của tín hiệu tiếng nói

4.5 Các hệ thống hội thoại

4.6 Từ điển điện tử

Chương 5: Các kỹ thuật trí tuệ nhân tạo hiện đại

5.1 Nhập môn

5.2 Mạng Nơ ron nhân tạo

5.2.1 Quá trình phát triển
5.2.2 Cơ sở của mạng nơ ron nhân tạo và một số khái niệm
5.2.3 Các cấu trúc mạng điển hình
5.2.4 Khả năng ứng dụng của mạng nơ ron

5.3 Logic mờ

5.3.1 Các khái niệm cơ bản
5.3.2 Các phép toán trên tập mờ
5.3.3 Biến ngôn ngữ
5.3.4 Các khả năng ứng dụng của Logic mờ

5.4 Giải thuật di truyền

5.4.1 Giải thuật di truyền
5.4.2 Cơ sở toán học của giải thuật di truyền
5.4.3 Thuộc tính của sơ đồ
5.4.4 Tác động của các toán tử di truyền trên một sơ đồ
5.4.5 Đặc điểm hội tụ của giải thuật di truyền

5.5 Các hệ thống thông minh lai

5.5.1 Hệ thống Nơ ron mơ
5.5.2 Hệ thống Nơ ron – Giải thuật di truyền
5.5.3 Các hệ thống lai khác

5.6 Các Agent thông minh

5.6.1 Giới thiệu
5.6.2 Hoạt động của các Agent
5.6.3 Cấu trúc của các agen thông minh
5.6.4 Môi trường (Environments)

Download tài liệu tại đây.

Giáo trình Trí tuệ nhân tạo AI của đại học sư phạm Hà Nội cũng là một cuốn mà bạn có thể quan tâm.

Giáo trình Trí tuệ nhân tạo – AI Đại học sư phạm Hà Nội

[Giáo trình] Trí tuệ nhân tạo Đại học sư phạm Hà Nội

Bộ môn trí tuệ nhân tạo đã được Trường đại học sư phạm Hà Nội sớm đưa vào giảng dạy với mục đích trang bị cho sinh viên các kiến thức cơ bản về Trí tuệ nhân tạo.

Mục lục của giáo trình:

Chương 1 – Giới thiệu

1.1. Trí tuệ nhân tạo là gì?
1.2. Lịch sử
1.3. Các lĩnh vực của AI
1.4. Nội dung môn học

Chương 2 – Bài toán và phương pháp tìm kiếm lời giải

2.1. Bài toán và các thành phần của bài toán
2.2. Giải thuật tổng quát tìm kiếm lời giải
2.3. Đánh giá giải thuật tìm kiếm
2.4. Các giải thuật tìm kiếm không có thông tin phản hồi (tìm kiếm mù)

Chương 3 –Các phương pháp tìm kiếm heuristic

3.1. Giải thuật tìm kiếm tốt nhất đầu tiên (best first search)
3.2. Các biến thể của giải thuật best first search
3.3. Các giải thuật khác

Chương 4 – Các giải thuật tìm kiếm lời giải cho trò chơi

4.1. Cây trò chơi đầy đủ
4.2. Giải thuật Minimax
4.3. Giải thuật Minimax với độ sâu hạn chế
4.4. Giải thuật Minimax với cắt tỉa alpha-beta

Chương 5 – Các phương pháp tìm kiếm lời

5.1. Các cải tiến của giải thuật quay lui
5.2. Các giải thuật tối ưu địa phương

Chương 6 – Các phương pháp lập luận trên logic mệnh đề

6.1. Lập luận và Logic
6.2. Logic mệnh đề: cú pháp, ngữ nghĩa
6.3. Bài toán lập luận và các giải thuật lập luận trên logic mệnh đề
6.4. Câu dạng chuẩn hội và luật phân giải
6.5. Câu dạng Horn và tam đoạn luận
6.6. Thuật toán suy diễn dựa trên bảng giá trị chân lý
6.7. Thuật toán suy diễn dựa trên luật phân giải
6.8. Thuật toán suy diễn tiến, lùi dựa trên các câu Horn
6.9. Kết chương

Chương 7 – Các phương pháp lập luận trên logic cấp một

7.1. Cú pháp – ngữ nghĩa
7.2. Lập luận trong logic vị từ cấp một
7.3. Phép đồng nhất hai vị từ, thuật giải đồng nhất
7.4. Câu dạng chuẩn hội, luật phân giải tổng quát
7.5. Câu dạng Horn và tam đoạn luận tổng quát trong logic cấp 1
7.6. Giải thuật suy diễn phân giải
7.7. Thuật toán suy diễn tiến dựa trên câu Horn
7.8. Thuật toán suy diễn lùi dựa trên câu Horn

Chương 8 – Prolog

8.1. Lập trình logic, môi trường lập trình SWI Prolog
8.2. Ngôn ngữ Prolog cơ bản, chương trình Prolog
8.3. Câu truy vấn
8.4. Vị từ phi logic (câu phi logic)
8.5. Trả lời truy vấn, quay lui, cắt, phủ định
8.6. Vị từ đệ qui
8.7. Cấu trúc dữ liệu trong Prolog
8.8. Thuật toán suy diễn trong Prolog

Chương 9 – Lập luận với tri thức không chắc chắn

Chương 10 – Học mạng nơron nhân tạo

Các bạn có thể download giáo trình trí tuệ nhân tạo đại học sư phạm Hà Nội tại đây.

Có thể bạn quan tâm đến một số giáo trình trí tuệ nhân tạo khác như:

Giáo trình trí tuệ nhân tạo của Học viện bưu chính viễn thông